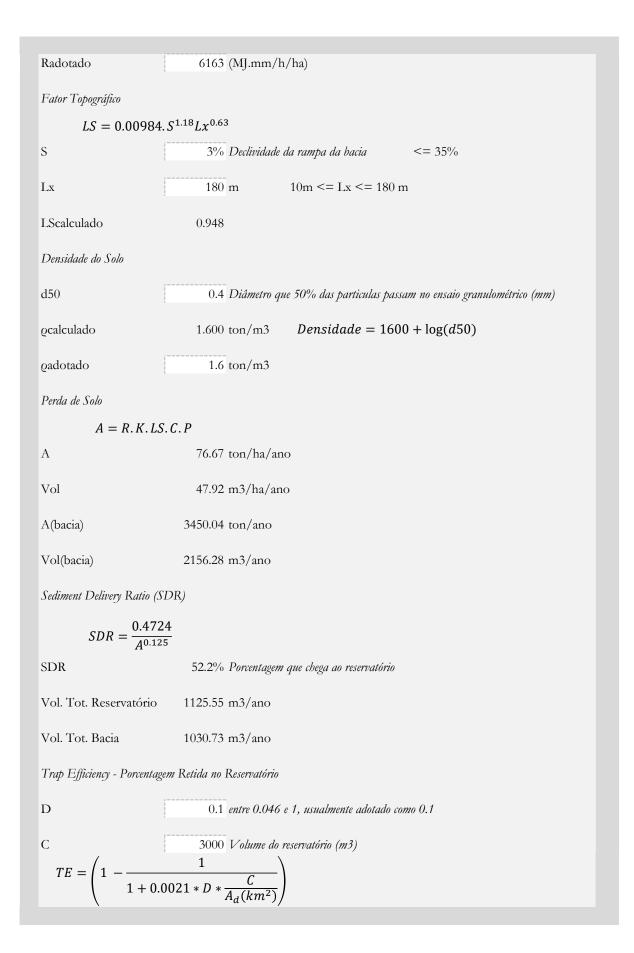
Método RUSLE - Equação da Perda Universal de Solo


Objetivo: Resolver a equação universal de perda de solo e calcular as porcentagens retidas em reservatórios

Equação - Método RUSLE

A = R.K.LS.C.P

Gerar Memória de Cálculo

A:	perda annual de solo (ton/ha/ano) devido ao escoamento superficial		
R:	fator de erosividade (MJ/ha/(mm/h))		
K:	fator de erodibilidade que varia entre 0.03 a 0.79 (ton/MJ/(mm/h))		
LS:	fator de declividade e comprimento de encosta (adimensional)		
C:	fator de prática de cultura variando de 0.001 a 1 (adimensional)		
P:	fator de prática de cultura contra erosão que varia de 0.3 a 1.0 (sazonal)		
Ad	45 Área de drenagem (ha)		
K	0.18 Fator de erosibilidade (ton/MJ/ha)/(mm/h). Ver Banco de Dados		
С	0.11	Fator de prática de cultura. Ver Banco de Dados	
P	0.68	Fator de prática de cultura contra erosão. Ver Banco de Dados	
$EI_{30} = \alpha + \beta(1$	$MFI)^{\gamma}$,	$MFI = (p_m^2/p_{tot})$ Ver no artigo	
		Ver Banco de Dados	
α	U	vei Danco de Dados	
β	147.26	Ver Banco de Dados	
γ	0.533	Ver Banco de Dados	
Meses	Pm (mm)	EI (MJ.mm/h/ha)	
Jan	235	1019.18	
Fev	250	1088.67	
Mar	160	676.53	
Apr	75	301.65	
May	75	301.65	
Jun	50	195.79	
Jul	40	154.34	
Aug	30	113.58	
Sep	75	301.65	
Oct	125	520.00	
Nov	150	631.55	
Dec	200	858.21	
Precipitação Total	1465	mm	
Realculado	6163	$(MJ.mm/h/ha)$ $R = \sum EI$	

ΤE

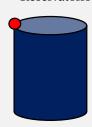
58.3% Trap efficiency. Porcentagem dos sedimentos que chegam ao reservatório e sedimentam nele.

Vol. Res

656.57 m3/ano

Tempo Para Encher o Reservatório

$$T = \frac{C}{Vol.\,Res}$$


Τ

4.6 anos

Bacia Hidrográfica

Resumo Bacia					
Massa Anual Mobilizada	3450.04 ton/ano				
Massa Anual Retida	1649.17 ton/ano				
Volume Anual Mobilizado	2156.28 m3/ano				
Volume Anual Retido	1030.73 m3/ano				

Reservatório

Resumo Bacia					
Massa Anual de Entrada	1800.87 ton/ano				
Massa Anual de Saída	750.36 ton/ano				
Massa Anual Retida	1050.51 ton/ano				
Volume Anual de Entrada	1125.55 m3/ano				
Volume Anual de Saída	468.98 m3/ano				
Volume Anual Retido	656.57 m3/ano				
Tempo para Assorear	4.6 anos				

Resumo Parâmetros					
R	6163.00	(MJ.mm/h/ha)			
K	0.18	(ton/MJ/ha)/(mm/h)			
LS	0.948				
С	0.11				
P	0.68				

Referencial Teórico

Neste memorial, 3 métodos foram utilizados para estimar as perdas de solo, retenção em reservatório, e retenção na bacia hidrográfica. Primeiro, estima-se a perda de solo pelo método RUSLE para toda a bacia. Desse valor encontrado, converte-se essa massa em volume através da densidade do solo, que pode ser calculada ou assumida. Seguindo esse procedimento, utiliza-se o método SDR para estimar a taxa de sedimentos que chega ao reservatório. Sobre essa taxa que chega ao reservatório, usando-se o método de Trap Efficiency, estima-se a massa de solo que fica retida no reservatório e que saí do mesmo. Ao final desse processo, temos como resultados as massas e volumes de solo que ficaram na baica e que ficaram retidas no reservatório. Por consequencia, conseguimos calcular sua vida útil, ou seja, o tempo que demoraria para assorear todo o reservatório.

Eng. Marcus Nóbrega