
Graphical Abstract
Gridded Bias-Corrected Intensity-Duration-Frequency Curves for Brazil using BR-DWGD,
IMERG, CHRIPS, and PERSIANN datasets with Locally-Derived Disaggregation Coeffi-
cients
Marcus Nóbrega Gomes Jr.

Gridded Bias-Corrected Intensity-Duration-Frequency Curves for 
Brazil using BR-DWG, IMERG, CHRIPS, and PERSIANN datasets with 

Locally-Derived Disaggregation Coefficients

Gridded Rainfall Data:
• BR-DWGD (1994-2024)
• IMERG (2000 -2024)
• CHRIPS (1994-2024)

• PERSIANN-CDR (1994-2024)

• Bias Correction
• National-scale Disaggregation 

Coefficients

Dataset of IDFs
• Rainfall Product

• Bias
• Disaggregation Method



Highlights
Gridded Bias-Corrected Intensity-Duration-Frequency Curves for Brazil using BR-DWGD,
IMERG, CHRIPS, and PERSIANN datasets with Locally-Derived Disaggregation Coeffi-
cients
Marcus Nóbrega Gomes Jr.

• A national framework for bias-corrected IDF curves across Brazil is developed.
• Local disaggregation ratios show 1h storms average 56% of daily rainfall totals.
• CETESB constants misestimate extremes by over 30% in convective and orographic regions.
• Multiplicative bias correction at the 98th percentile reduces underestimation of extremes.
• The GRIDF-BR toolbox enables sub-municipality IDF variability estimation.



Gridded Bias-Corrected Intensity-Duration-Frequency
Curves for Brazil using BR-DWGD, IMERG, CHRIPS,
and PERSIANN datasets with Locally-Derived
Disaggregation Coefficients
Marcus Nóbrega Gomes Jr.a,∗

aThe University of Arizona, Department of Hydrology and Atmospheric Sciences, John W. Harshbarger
Building, Tucson, 85719, Arizona, United States of America

A R T I C L E I N F O
Keywords:
Rainfall extremes
IDF curves
Bias correction
Disaggregation coefficients
Brazil

A B S T R A C T
Reliable Intensity–Duration–Frequency (IDF) curves are essential for urban
planning, stormwater design, and flood risk management, yet most equations
in Brazil remain outdated and rely on spatially uniform disaggregation
coefficients. We developed a national framework to generate gridded, bias-
corrected IDFs by combining daily maxima from BR-DWGD (1994–2024),
CHIRPS (1994–2024), PERSIANN-CDR (1994–2024), and IMERG V07
(2000–2024) with sub-daily ratios from 3,165 ANA telemetric stations (see
SM for a spatial reference of these). Daily extremes were bias-corrected
using exceedances above the 98th percentile, mapped to sub-daily durations,
and fitted using the Gumbel distribution in a 4-parameter Sherman equation
on a 0.1° grid (0.25° for PERSIANN). Results show that one-hour rainfall
represents on average 56% of the daily maximum, while sub-hourly bursts
contribute 30–40%. Compared with Environmental Company of the State of
São Paul (CETESB) constants, the local typical standard in Brazil, local ratios
are lower for very short intervals (5/30 min and 10/30 min lower by 21% and
10%) but higher at longer scales (1 h/24 h is 0.50 versus 0.42, a 16% increase;
6–12 h/24 h are 3–9% higher). Raw gridded rainfall products systematically
underestimated extremes, but bias correction improved parity slope agree-
ments in extremes (e.g., BR-DWGD from 0.61 to 1.07; PERSIANN from
0.38 to 0.94). We provide national rasters of Sherman parameters capable
of capturing municipal climate variability and the GRIDF-BR Google Earth
Engine application for rapid, reproducible IDF retrieval.

1. Introduction
Extreme rainfall events represent one of the most critical hazards for modern societies,

with cascading impacts on infrastructure safety, urban mobility, public health, and economic
productivity (Handmer et al., 2012; Dodman et al., 2023; Kandalai et al., 2023). Recently, in
Rio Grande do Sul, Brazil, floods from April to early May 2024 affected 2.4 million people
and left 213 dead or missing, after 444 mm of rain fell in 8 days—652 mm over 35 days and
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drainage systems, flood defenses, and other water-related infrastructure relies fundamentally on
Intensity–Duration–Frequency (IDF) curves, which summarize the statistical relationship between
storm intensity, duration, and recurrence (Butcher et al., 2021). Outdated or poorly calibrated IDFs
can lead to underestimation of design storms, resulting in insufficient capacity of storm sewers,
frequent road flooding, or even structural failures in dams and levees (Bibi and Tekesa, 2023;
Cook et al., 2020). The economic costs of such misestimations are amplified in densely populated
urban centers, where infrastructure resilience directly affects millions of people. Climate change
is expected to exacerbate these risks by altering both the frequency and intensity of extreme daily
and sub-daily precipitation (Mascaro et al., 2025; Arnbjerg-Nielsen et al., 2013; Tamm et al., 2023;
Ballarin et al., 2024), yet in practice, many regions still lack updated IDFs even for the current
climate, leaving urban planning and risk management reliant on obsolete design standards.

A major constraint on developing reliable IDFs is the availability of high-quality, long-term sub-
daily rainfall data (Yan et al., 2021). Short-duration records are indispensable for designing systems
sensitive to high-intensity bursts, such as urban stormwater networks, but in many countries,
such data remain limited in spatial coverage and temporal continuity. Breaks in measurement,
inconsistent maintenance of pluviographs, and relatively recent deployment of automatic stations
contribute to fragmented datasets that are often too short for robust extreme value analysis (das
Neves Almeida et al., 2025). Even at the daily scale, rain gauge density can be insufficient to resolve
spatial variability across diverse climatic regions, resulting in large ungauged areas where IDFs
must be extrapolated. This lack of observational rainfall depths poses significant challenges for
urban planning, hydrological modeling, and the development of reliable regional design standards.

In this context, remote sensing technologies have emerged as an important complement to
ground-based observations. Weather radar networks provide high-resolution coverage at regional
scales (Ghebreyesus and Sharif, 2021), while satellite-based precipitation estimates such as those
from passive microwave and infrared sensors extend observations to national and continental
domains (Ombadi et al., 2018; Venkatesh et al., 2022; Mianabadi, 2023; Lau and Behrangi, 2022;
Alsumaiti et al., 2023). These products make it possible to infer IDF relationships in regions where
ground data are sparse or unavailable, offering new opportunities for resilient infrastructure design
in data-scarce environments. However, radar and satellite products are not free from limitations:
they often carry systematic biases, underestimate extremes in convective systems, or misrepresent
orographic enhancement. For this reason, bias correction against ground data is essential before
such products can be applied to engineering design.

In Brazil, where densely populated urban areas coexist with flood-prone river basins, reliable
and spatially consistent Intensity–Duration–Frequency (IDF) curves are critical for the design
of resilient hydraulic infrastructure (Stein et al., 2024). Outdated or poorly calibrated IDFs can
substantially underestimate extreme rainfall magnitudes, leading to insufficient drainage capacity,
structural failures, and heightened economic and social risks during flood events. Historically, IDF
derivation across the country has relied on heterogeneous methodologies, with differences in record
length, probabilistic distribution choice, and quality control procedures. A particularly limiting
step has been the conversion from daily to sub-daily durations, which is often performed using
constant disaggregation coefficients recommended by the CCETESB (Environmental Company of
the State of São Paulo) (de Saneamento et al., 1986). These coefficients, derived from a limited
number of pluviographic stations in southeastern Brazil, have been applied nationwide without
Gomes Jr. et. al: Preprint submitted to Elsevier Page 2 of 25
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with storm type, convective activity, and orographic effects, leading to systematic biases in short-
duration rainfall estimates. Although a few studies have attempted to refine these ratios using
local pluviographic or automatic station data (Carvalho Abreu et al., 2023; Caldeira et al., 2015),
CETESB’s constants remain the default in many design guidelines due to the absence of a spatially
explicit, nationally consistent alternative.
1.1. Literature Review

In Brazil, numerous efforts have been undertaken to estimate Intensity–Duration–Frequency
(IDF) relationships, generally constrained to specific states or municipalities and based on locally
available pluviometric or pluviographic records. Several studies have relied on daily Annual
Maximum Series (AMS) of daily rainfall depth combined with standard disaggregation coefficients
from CETESB to obtain sub-daily intensities (Campos et al., 2017; de Souza et al., 2016; Ballarin
et al., 2022b; Lima et al., 2021; Back et al., 2020), while others have derived local coefficients
from high-resolution pluviograph data to improve accuracy (Almeida et al., 2025; Carvalho Abreu
et al., 2023; de Bodas Terassi et al., 2023; Penner et al., 2023). These coefficients, determined
by CETESB, are widely used in the derivations of IDF curves for Brazil. In states such as
Rio Grande do Sul, Sao Paulo, Paraná, Rondônia, and Paraíba, IDF curves have been estimated
using probability distributions including Gumbel, GEV, Kappa, and Log-Pearson III, often with
spatial interpolation techniques such as inverse distance weighting, Voronoi polygons, or Ordinary
Cokriging (Rodrigues et al., 2024, 2023; Aragão et al., 2024; Pansera and Gomes, 2025; de Souza
et al., 2016; Coelho et al., 2023). These works have generated valuable spatial datasets of IDF
parameters, yet the statistical methods, record length requirements, and spatial resolution vary
considerably among regions.

The approaches adopted also differ in their treatment of temporal variability. Most studies
assume stationarity in extreme rainfall statistics (Rodrigues et al., 2024, 2023; Aragão et al., 2024;
Pansera and Gomes, 2025; de Souza et al., 2016; Lima et al., 2021; Coelho et al., 2023; Back et al.,
2020; Boulomytis et al., 2018; Penner et al., 2023), but recent works have explored nonstationary
modeling in response to observed or projected climate change (de Souza Costa et al., 2020; Silva
et al., 2023; Nunes et al., 2021).

At the national scale, an unprecedented effort has been made to compile and harmonize IDF
parameters from 370 publications into an open database covering 6,550 locations (Torres et al.,
2025). This dataset consolidates disparate sources and provides a foundation for broader analyses,
but it inherits the methodological inconsistencies of its constituent studies, including heterogeneous
statistical models, disaggregation approaches, and validation procedures. Furthermore, several
state-level investigations have been limited by sparse gauge networks, short historical records, or the
absence of pluviographic data, leading to uncertainties in short-duration estimates (Carvalho Abreu
et al., 2023; Lima et al., 2021; Boulomytis et al., 2018; Penner et al., 2023). These limitations are
particularly acute in the North and Northeast, where long-term high-resolution rainfall measure-
ments are scarce (de Bodas Terassi et al., 2023; de Souza Costa et al., 2020).
1.2. Paper Objectives and Contributions

This methodological fragmentation, as aforementioned, presents a critical gap: While regional
and local IDF curves exist for many parts of Brazil, there is no unified, methodologically consistent
framework to estimate IDF relationships or to derive disaggregation coefficients for the entire
Gomes Jr. et. al: Preprint submitted to Elsevier Page 3 of 25
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The heterogeneity in input data resolution, statistical modeling choices, spatial interpolation
methods, and temporal assumptions hampers comparability and integration. In this context, the
development of a national-scale IDF estimation approach based on gridded rainfall datasets offers
a pathway to ensure spatial continuity and methodological uniformity, especially in data-scarce
areas. Such a framework would support resilient infrastructure design and water resources planning
and management.

The primary objective of this study is to develop a consistent, nationwide framework for
updating rainfall Intensity–Duration–Frequency (IDF) curves for Brazil. To this end, we integrate
BR-DWGD daily maxima (1994–2024) (Xavier et al., 2022) with locally derived sub-daily
disaggregation coefficients from ANA’s automatic network, while also incorporating satellite-
based products (IMERG (Huffman et al., 2023), PERSIANN-CDR (Ashouri et al., 2015), and
CHIRPS (Funk et al., 2015)) to improve coverage in regions with sparse gauge density and to
provide local comparative analysis of different products, enhancing uncertainty analysis. Beyond
producing harmonized gridded IDFs, we further implement an open-access toolbox on the Google
Earth Engine platform, namely Gridded Intensity Duration Frequency - Brazil (GRIDF - BR)
available at https://gridf-470516.projects.earthengine.app/view/gridf-br, enabling
rapid evaluation of IDFs under different scenarios, including raw versus bias-corrected data,
alternative disaggregation strategies, and cross-product comparisons.

2. Methodology
2.1. Study Area

Brazil spans over 8.5 million km2 across a wide latitudinal range (5°N–34°S) and longitudinal
extent (34°W–74°W), resulting in pronounced geographical, climatic, and hydrological diversity
as presented in Fig. 1. The country encompasses multiple Köppen climate zones, from humid
equatorial (Af, Am) conditions in the Amazon Basin, with annual rainfall often exceeding
2,500 mm, to semi-arid (BSh) regions in the Northeast where totals frequently fall below 800 mm.
Tropical savanna (Aw) climates dominate much of central Brazil, while humid subtropical (Cfa,
Cfb) conditions prevail in the South. Rainfall regimes are driven by a combination of large-
scale and regional atmospheric systems, including the Intertropical Convergence Zone (ITCZ),
South Atlantic Convergence Zone (SACZ), mesoscale convective systems, and mid-latitude frontal
systems, with significant modulation by orographic features such as the Serra do Mar and Serra
da Mantiqueira. These processes produce strong spatial and temporal variability in precipitation
extremes, with urban flash flooding recurrent in densely populated areas such as São Paulo, Rio de
Janeiro, and Belo Horizonte, and widespread riverine flooding in major basins like the Amazon,
Paraná, and São Francisco. This heterogeneity in climate drivers and hazard exposure highlights
the need for spatially explicit and locally calibrated Intensity–Duration–Frequency (IDF) curves to
support climate-resilient hydraulic infrastructure design across the country.
2.2. Rainfall Datasets
2.2.1. BR-DWGD

We employed the Brazilian Daily Weather Gridded Dataset (BR-DWGD) (Xavier et al., 2022),
which provides daily precipitation fields at 0.1◦ (≈ 11 km at the equator) resolution. Originally
spanning 1961–2020, the dataset was extended by (Xavier et al., 2022) to January 2024 and is based
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Figure 1: Study area and spatial distribution of rain-gauge stations for hydro-climatic analysis in the
context of Brazil. (a–c) Locations of station sets (data without treatment) for the ANA sub-daily
stations (a), and stations used in Torres et al. (2025) to derive IDFs with sub-daily data (b) and
with disaggregation methods (c). Similarly, parts (d-f) are the treated rain gauge stations for the same
cases of (a-c) ,following quality control checks. Plot (g) shows the number of stations of each case,
and (h-j) shows national annual mean precipitation (1994–2024 using BR-DWGD at 0.1◦ resolution),
evapotranspiration (from remotely sensed products at 0.1◦ resolution), and 90-m DEM using MERIT
DEM.
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control, including consistency checks, outlier detection, and cross-validation with neighboring
gauges, after which spatial interpolation was performed using Angular Distance Weighting (ADW)
to better capture complex rainfall gradients (Xavier et al., 2022).
2.2.2. IMERG (Integrated Multi-satellitE Retrievals for GPM)

The Integrated Multi-satellitE Retrievals for GPM (IMERG, Version 07) (Huffman et al., 2023)
provides global precipitation estimates by merging passive-microwave observations from the GPM
constellation with geostationary infrared data and monthly gauge analyses. It offers near-global
coverage (90◦ N–90◦ S) at 0.1◦ spatial and 30-minute temporal resolution from June 2000 to the
present, with three processing streams: Early and Late runs for near–real-time monitoring, and the
gauge-adjusted Final run recommended for hydrological applications. IMERG data are distributed
via NASA GES DISC, PPS, and Google Earth Engine, with precipitation reported as rain rate
(mm h−1). Despite improvements in Version 07, limitations remain, including underestimation of
orographic enhancement, smoothed convective peaks, and detection errors in light or warm-rain
events. Furthermore, only the final run applies gauge correction, making local validation and bias
adjustment essential when using IMERG for engineering design and IDF curve estimation.
2.2.3. CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data)

The Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) (Funk et al.,
2015) provides quasi-global rainfall estimates from 1981 to the present, spanning 50◦ S–50◦ N at
0.05◦ (≈5 km) spatial resolution. It is generated by blending infrared-based cold-cloud duration
fields with in situ rain gauge observations from multiple networks, thereby reducing systematic
biases common to purely satellite products while retaining fine spatial detail. CHIRPS is openly
available in GeoTIFF and NetCDF formats through the Climate Hazards Center and on Google
Earth Engine (UCSB-CHG/CHIRPS/DAILY), with daily, pentadal, and monthly aggregations. Known
limitations include underestimation of warm-rain processes and orographic enhancement, as well as
regionally variable gauge density for bias correction, leading to larger errors in convective, moun-
tainous, and coastal regions. Nonetheless, its long record, relatively high resolution, and integration
of ground data have established CHIRPS as a widely used dataset for drought monitoring, climate
variability analysis, and hydrological modeling across the tropics and subtropics.
2.2.4. PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial

Neural Networks – Climate Data Record)
The Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks–Climate Data Record (PERSIANN-CDR) (Ashouri et al., 2015) provides global daily
precipitation estimates from 1983 to the present at 0.25◦ spatial resolution. Produced by the Center
for Hydrometeorology and Remote Sensing (CHRS), it applies an artificial neural network to
geostationary infrared imagery, followed by monthly bias adjustment using the Global Precipi-
tation Climatology Project (GPCP) product to ensure temporal consistency. PERSIANN-CDR is
distributed in NetCDF format through NOAA’s NCEI and the CHRS Data Portal, and its long
record makes it well suited for climate variability analyses, drought monitoring, and hydrological
trend studies. Limitations include difficulties in representing warm-rain processes, uncertainties
in convective regimes, and underestimation of orographic enhancement, while the coarser 0.25◦
resolution smooths localized extremes compared to finer-scale datasets such as IMERG or CHIRPS.
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foundation for climatological and hydrological applications, especially when used in combination
with higher-resolution or ground-based datasets.
2.2.5. Annual Maxima Extraction

To construct annual maximum series for Intensity–Duration–Frequency (IDF) analysis, we first
downloaded daily precipitation data in NetCDF format from each gridded product considered in this
study. The analysis period was set to 1994–2024 for BR-DWGD, CHIRPS, and PERSIANN-CDR,
while for IMERG the record was limited to 2000–2024 due to its later availability. For each grid cell,
the AMS was extracted by scanning the full daily series within each calendar year. This procedure
was applied independently to all datasets at their native spatial resolution before subsequent spatial
harmonization to the 0.1◦ target grid, except for PERSIANN-CDR, which was made for a 0.25◦
grid.
2.2.6. High-Resolution Sub-Daily Rainfall Data

High-resolution rainfall observations were obtained from the Brazilian National Water Agency
(ANA) telemetric network through its automatic data retrieval platform. The dataset includes
records from 3,165 stations distributed across Brazil, with temporal resolutions ranging from 15
minutes to 1 hour, depending on station configuration and availability. Data was retrieved from
01/01/2010 to 01/01/2024. Given the relatively limited distribution of stations, we opted to remove
stations with more than 30% missing data or less than 4 years of data, which were not considered. In
addition, to remove clear measurement errors in the analysis, stations with recorded values larger
than 300 mm / 15-min time-steps had their values dismissed. In this study, we focus on recent
rainfall sub-daily characteristics rather than collecting old inactive stations, as presented in previous
articles that developed disaggregation coefficients (Torres et al., 2025).

Custom MATLAB scripts were developed to automate the retrieval from ANA API, perform
quality control, and organize these high-frequency records in a dataframe. For each station, sub-
daily rainfall series were processed to extract annual maximum precipitation for durations matching
those defined in the CETESB methodology (15, 30, 60 minutes, 6, 8, 10, 12, and 24 hours). Local
disaggregation coefficients were then computed as the ratio between the corresponding maximum
precipitation observed at each sub-daily duration and the annual maximum daily rainfall.
2.3. Disaggregation Coefficients
2.3.1. Derivation of local disaggregation coefficients

Local disaggregation coefficients were derived from quality-controlled sub-daily rainfall
records obtained from the National Agency of Water (ANA) telemetric network. For each station,
daily totals were first accumulated using a fixed 24-hour window anchored at 07:00 local time, the
typical time at which measurements of pluviometer stations are taken. The maximum daily rainfall
observed over the record was then identified as the reference value against which sub-daily maxima
were scaled.

To compute daily volumes, a time-window shift starting daily at 7 a.m. was used as a proxy
for daily rainfall to determine disaggregation coefficients from daily to 24-h. Sub-daily maxima
were extracted by applying a continuous moving window to the high-resolution rainfall series.
For each target duration in the set of 15, 30, 60, 360, 480, 600, 720, and 1,440 minutes, the
largest rainfall accumulation across the entire observation period was recorded. The disaggregation
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the corresponding daily maximum. These dimensionless ratios provide a direct measure of how
extreme sub-daily rainfall relates to daily extremes at each station and form the basis for subsequent
IDF curve derivation.

To ensure consistency and quality, stations were retained only if they satisfied the following
criteria: (i) at least four distinct hydrologic years of valid sub-daily data, (ii) no daily total exceeding
500 mm, (iii) at most one calendar year with all daily totals equal to zero (as a proxy for sensor or
ingest failure), and (iv) strictly increasing disaggregation ratios across durations,
𝑟15 < 𝑟30 < 𝑟60 < 𝑟360 < 𝑟480 < 𝑟600 < 𝑟720 < 𝑟1440, (1)
within a numerical tolerance 𝜀 = 10−6. Although nondecreasing (≤) behavior is physically
admissible, plateaus often arise when the strongest event has a duration shorter than the longer
windows, producing degenerate 𝑟𝑡 values that flatten for larger 𝑡. Enforcing a strict increase yielded
better-conditioned duration scaling and more stable IDF fits.

Because the minimum observational resolution of the stations was 15 minutes, direct estimates
for shorter durations (5, 10, 20, and 25 minutes) were not possible, unless a data-driven model is
used. To extend the coefficient set, a logarithmic model of the form 𝑐 = 𝑎 ln(𝑡) + 𝑏 was fitted to
the observed coefficients for durations equal to or longer than 15 minutes, up to 24 hours (Silveira,
2000). The fitted curve was then used to predict coefficients at 𝑡 = 5, 10, 20, and 25 minutes. To
guarantee physical consistency, monotonicity constraints were enforced such that 0 ≤ 𝑐5 ≤ 𝑐10 ≤
𝑐15 and 𝑐15 ≤ 𝑐20 ≤ 𝑐25 ≤ min(𝑐30, 1). When the raw logarithmic fit violated these constraints
or produced non-finite or negative estimates, only the offending predictions were replaced using
empirically derived ratio fallbacks from the subset of stations with valid fits (see Sup. Material for
reference to the determination of these fallbacks). Specifically, the fallback ratios applied were
𝑐10 = 0.817 𝑐15, 𝑐5 = 0.510 𝑐10 (or, if 𝑐10 was unavailable, 𝑐5 = 0.417 𝑐15), 𝑐20 = 0.830 𝑐30,and 𝑐25 = 0.918 𝑐30. After applying these corrections, any residual violations were clipped to the
nearest admissible bound to enforce 0 ≤ 𝑐5 ≤ 𝑐10 ≤ 𝑐15 ≤ 𝑐20 ≤ 𝑐25 ≤ min(𝑐30, 1). Stations
requiring fallback or clamping were labeled violated-fit, whereas those satisfying all constraints
without intervention were labeled ok-fit.

Out of the 594 stations with a minimum resolution of 15 minutes, 189 yielded consistent
logarithmic fits, while 397 exhibited at least one violation for shorter durations. All results were
systematically flagged according to their performance, and we recommend cautious use of stations
labeled as violated-fit to avoid unrealistic IDF parameterizations. The final dataset was delivered
both as a georeferenced shapefile and as a tabular .csv file, available at https://github.com/
marcusnobrega-eng/GRIDF

2.3.2. Interpolation and Treatment of Numerical Artifacts
To provide continuous spatial coverage of disaggregation coefficients across Brazil, we applied

Inverse Distance Weighting (IDW) interpolation to the at-station sub-daily rainfall ratios derived
from ANA’s high-resolution rainfall network. Interpolation was performed on a 0.1◦ grid with a
power parameter of two and a neighborhood of the five nearest stations. This method was selected
for its simplicity, reproducibility, and widespread use in hydrological applications where unevenly
distributed gauge networks are available.
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numerical artifacts, particularly the violation of the monotonicity condition that requires sub-daily
disaggregation ratios to increase with duration. Such non-physical behavior may arise in sparsely
gauged areas or in transitional climatic zones where interpolation blends contrasting regimes. To
address this issue, we adopted a hybrid strategy: when interpolated ratios at a given grid cell did
not satisfy the monotonicity criterion, the Intensity–Duration–Frequency (IDF) fitting was instead
performed using the disaggregation coefficients of the nearest observation grid cell that met all
screening requirements. While this approach ensures physically consistent IDF curves for practical
applications, we also make the interpolated rasters available in the database as supplementary
products. These rasters are valuable for visualizing large-scale spatial patterns and conducting
exploratory analyses, but users are cautioned that grid cells affected by non-monotonic artifacts
should not be directly applied in design studies without further inspection.
2.3.3. CETESB Disaggregation Coefficients

As a reference scenario, we adopt the fixed-duration rainfall ratios provided by the Environ-
mental Company of the State of São Paulo (CETESB) (de Saneamento et al., 1986), which have
been traditionally used in Brazilian hydraulic design standards using IDF curves. These coefficients
express the proportion of maximum precipitation at sub-daily durations relative to the maximum
daily rainfall and are assumed spatially invariant across the country. The fixed ratios are: 0.248
for 15 min, 0.354 for 30 min, 0.479 for 1 h, 0.821 for 6 h, 0.889 for 8 h, 0.939 for 10 h 0.956
for 12 h, and 1.14 for 24 h. Although widely applied in engineering practice, these constants
were originally derived from a limited regional dataset and may not accurately represent local
rainfall dynamics in diverse climatic regions of Brazil, thereby motivating the present comparison
with locally derived disaggregation coefficients. For the IDFs fitted with CETESB coefficients, all
disaggregation durations were used.
2.4. Multiplicative Bias Correction and Percentile Analysis

To evaluate and correct systematic deviations in satellite- and reanalysis-based rainfall products,
multiplicative bias factors were derived using matched pairs of annual maximum daily precipitation
from ANA pluviometric stations and collocated grid cells. For each year in the study period,
the largest daily rainfall was extracted at every station using the HydroBr tool (Carvalho, 2020)
and compared with the corresponding product value at the same location. The ratio of observed
to gridded maxima defines a multiplicative factor that rescales product estimates toward the
station-based reference. This approach preserves the temporal structure of the gridded series while
correcting systematic magnitude errors (Alsumaiti et al., 2023).

Because Intensity–Duration–Frequency (IDF) analyses are primarily driven by the upper tail
of the rainfall distribution, bias correction was further assessed across percentile thresholds rather
than only at the mean or median. In particular, emphasis was placed on the 98th percentile, which
represents the long tail of the distribution where the most hydrologically relevant extremes occur.
This choice ensures that the correction improves the representation of rare but impactful events,
which directly govern return period estimates and hydraulic design criteria. Diagnostic plots and
validation metrics were therefore computed across percentiles, with particular attention to the
upper decile, to confirm that the corrected products reproduce extreme rainfall behavior rather
than simply adjusting central tendencies. By explicitly targeting the long tail of the distribution,
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and flood risk assessment.
2.4.1. Computation of Bias Factors

Bias factors were computed to quantify the systematic difference between gridded rainfall
products and station observations, focusing on the upper tail of the distribution relevant for IDF
estimation. For each station 𝑖, daily precipitation values were paired with the corresponding grid
cell from each product. Only values exceeding the 98th percentile of the station’s distribution were
retained, ensuring that the correction targets extremes rather than central tendencies.

For each exceedance pair 𝑗 at station 𝑖, the instantaneous ratio was calculated as

𝜁𝑖𝑗 =
𝑃 station
𝑖𝑗

𝑃 product
𝑖𝑗

. (2)

The representative bias factor for station 𝑖 was then defined as the mean across all 𝑁𝑖 exceedances:

𝜁𝑖 =
1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝜁𝑖𝑗 . (3)

Values of 𝜁𝑖 > 1 indicate systematic underestimation of extremes by the product, while 𝜁𝑖 < 1
indicate overestimation. To ensure stability and robustness, additional filters were applied: annual
maxima below 1 mm day−1 were excluded, ratios outside the range [0.1, 10] were clipped, and
stations with fewer than ten valid exceedances were removed from the analysis.
2.4.2. Spatial Interpolation of Bias Factors

Station-level bias factors were interpolated to continuous grids using inverse-distance weighting
(IDW). The interpolated field can be estimated as:

𝜁 (𝑥, 𝑦) =
∑𝑘

𝑖=1 𝑤𝑖(𝑥, 𝑦) 𝜁𝑖
∑𝑘

𝑖=1𝑤𝑖(𝑥, 𝑦)
, 𝑤𝑖(𝑥, 𝑦) =

1
𝑑𝑖(𝑥, 𝑦)𝑝

, (4)

where 𝑑𝑖(𝑥, 𝑦) is the distance from station 𝑖 to the grid point. The parameters used were 𝑝 = 2 for
the distance decay and 𝑘 = 5 for the number of neighbors. Interpolation was carried out separately
for each dataset, with PERSIANN bias factors assigned to a 0.25◦ grid and the others to a 0.1◦ grid.
2.4.3. Bias Correction of Annual Maxima Fields

For each rainfall product, a gridded field of bias factors was obtained from the IDW interpola-
tion. This field was then used to correct the raw annual maxima as
𝑃 corrected(𝑥, 𝑦) = 𝜁 (𝑥, 𝑦) ⋅ 𝑃 product(𝑥, 𝑦). (5)
This multiplicative adjustment rescales the rainfall extremes in each dataset to better match gauge-
based reference values.
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2.4.4. Validation and Diagnostics
Bias-corrected datasets were evaluated using graphical and statistical diagnostics. Scatter plots

of observed versus gridded annual maxima were constructed before and after correction, with
the 1:1 line as reference. Density plots illustrate the concentration of points across the value
range. The coefficient of determination (𝑅2), mean bias, root-mean-square error (RMSE), and the
Kolmogorov–Smirnov statistic (𝐷 and associated 𝑝-value) were computed to test distributional
similarity. These diagnostics provide complementary views of the effectiveness of the bias
correction, focusing both on pointwise agreement and on the distribution of extremes.
2.5. Extreme value analysis (Gumbel)

Annual daily maxima at each pixel are modeled with the Gumbel (Type I) distribution (Cooray,
2010), a standard choice for block maxima that avoids the instability of estimating a shape
parameter from short records. With 𝑋 the annual maximum depth, the cumulative distribution
function is

𝐹𝐺(𝑥;𝜇, 𝛽) = exp
[

−exp
(

−
𝑥 − 𝜇
𝛽

)]

, (6)

where 𝜇 and 𝛽 > 0 are location and scale. Parameters are estimated by method of moments for
numerical robustness and reproducibility in large spatial fits. Let 𝑚 and 𝑠 denote the sample mean
and unbiased standard deviation of the annual maxima:
𝛽 = 𝑠

𝜋∕
√

6
, 𝜇 = 𝑚 − 𝛾 𝛽, (7)

with Euler’s constant 𝛾 ≈ 0.57721. Return levels use the reduced variate

𝑦𝑇 = − ln
[

− ln
(

1 − 1
𝑇

)]

, (8)
giving the 𝑇 -year quantile
𝑥𝑇 = 𝜇 + 𝛽 𝑦𝑇 , (9)
evaluated for 𝑇 ∈ {2, 5, 10, 25, 50, 75, 100} years to remain within a defensible extrapolation range
relative to record length and to represent the typical return periods used in urban drainage design.

Goodness-of-fit is screened by a Kolmogorov–Smirnov (KS) test applied to the fitted CDF
(Berger and Zhou, 2014). With 𝐹𝑛 the empirical CDF (plotting positions (𝑖 − 1

2
)∕𝑛 on the ordered

sample), the statistic and 𝑝-value are
𝐷𝑛 = sup

𝑥
|𝐹𝑛(𝑥) − 𝐹𝐺(𝑥;𝜇, 𝛽)|, (10)

𝜆 = (
√

𝑛 + 0.12 + 0.11∕
√

𝑛)𝐷𝑛, 𝑝 ≈ 2
∞
∑

𝑗=1
(−1)𝑗−1𝑒−2𝑗2𝜆2 , (11)
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subsequently mapped to subdaily intensities using externally specified disaggregation factors.
2.6. IDF Curve Fitting

We fitted pixelwise Intensity–Duration–Frequency (IDF) relations using the four-parameter
Sherman model (Sherman, 1931),

𝑖(𝑡, 𝑅𝑃 ) = 𝐾 𝑅𝑃 𝑎

(𝑏 + 𝑡)𝑐
, (12)

where 𝑖 is intensity (mm h−1), 𝑡 is duration (min), 𝑅𝑃 is the return period (yr), and (𝐾, 𝑎, 𝑏, 𝑐) are
empirical parameters. For each dataset (BR-DWGD, IMERG, CHIRPS, and PERSIANN-CDR) we
constructed annual-maximum daily (24 h) series at the native grid, both in raw and bias-corrected
form. Daily extremes were modeled with the Gumbel distribution previously described.

Sub-daily design depths were generated by scaling 𝑃24(𝑅𝑃 ) with duration-specific disaggrega-
tion ratios and converting to intensities. We evaluated three disaggregation modes: (i) CETESB,
using fixed national ratios; (ii) RASTER, using spatially continuous ratio fields obtained by IDW
interpolation of station-based ratios with monotonicity enforcement and nearest-neighbor repair of
problematic pixels; and (iii) STATION, assigning to each grid cell the ratio vector from the nearest
“ok-fit” telemetric gauge. Durations were 𝑡 ∈ {5, 10, 15, 20, 25, 30, 60, 360, 480, 600, 720, 1440}min;
and sub-hourly ratios follow the station-calibrated/log-extended scheme described earlier for
durations outside multiples of the station duration. This workflow was run for every dataset and for
both raw and bias-corrected annual maxima, yielding paired families of sub-daily design intensities
across return periods and durations.

Sherman parameters (𝐾, 𝑎, 𝑏, 𝑐) were estimated per pixel by nonlinear least squares in log
space, using a linear (Bernard-type) regression as a warm start and bounded optimization to ensure
physical plausibility. Specifically, we minimized the sum of squared residuals between log10 of the
gridded design intensities and the model log10

(

𝐾 𝑅𝑃 𝑎
)

− 𝑐 log10(𝑏 + 𝑡), with lower/upper bounds
𝐾 > 0, 0 ≤ 𝑎 ≤ 1, 𝑏 > 0, and 0 < 𝑐 ≤ 5. When available, lsqcurvefit (trust-region-reflective)
was used; otherwise, a derivative-free fallback (fminsearch) on a reparameterized space ensured
robustness. For each fit we stored (𝐾, 𝑎, 𝑏, 𝑐) and diagnostics (MSE, RMSE, and 𝑅2), producing
georeferenced rasters for all datasets, disaggregation modes, and bias-correction states suitable for
city- or catchment-level IDF extraction.
2.7. Context of Existing IDF Dataset

The comprehensive national IDF database compiled by Torres et al. (2025) provides an
unprecedented collection of 6,550 station-based equations across Brazil, serving as an important
benchmark for hydrologic and hydraulic studies. However, the temporal coverage of the underlying
records for IDFs delimited with pluviography data is limited. On average, for IDFs fitted with
pluviographs, the rainfall series used for the fittings span only 16.7 ± 7 years, with most equations
beginning in 1980 and extending, on average, until 1997 for the IDFs based on pluviographic
stations. This indicates that a substantial portion of the database reflects climatic conditions of
the late 20th century rather than more recent decades, during which both observational networks
and climate variability have evolved significantly.
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many of the equations in Torres et al. (2025) dataset may underestimate or misrepresent current
rainfall extremes (Ballarin et al., 2022a). Consequently, while invaluable as a useful reference,
this dataset highlights the need for a unified methodology based on long-term, quality-controlled,
and up-to-date observations. In this context, our study provides a complementary perspective by
generating IDFs from satellite products and rain gauge-based observations.

From a national archive of 6,586 IDFs parametrizations available in Torres et al. (2025),
we built two analysis subsets. First, the “standard” network comprised 762 stations with ≥ 10
years of observations valid for all durations; after applying completeness and quality filters, this
was reduced to 552 stations. The standard stations were derived with sub-daily rainfall data, and
therefore, no disaggregation coefficients were used. The data used to derive these disaggregation
coefficients is not readily available; therefore, no quality control was performed on the derived
IDF curves from this method. Instead, we assumed the published values from Torres et al. (2025).
Because multiple gauges occasionally fell within the same 0.1° grid cell, we selected a single
representative gauge per pixel (after resampling to the analysis grid), yielding 390 stations used
for the spatial interpolation. Second, for the daily/disaggregation IDFs that used various methods
for disaggregation coefficients, we adopted a stricter screening—requiring ≥ 30 years of record
and removing dubious values according to our QC threshold, which reduced the original 5,894
stations to 414 stations QC checked stations. The resulting stations were later used to compare
newly developed IDFs generated with GRIDF and compare them to the existing database.

3. Results
3.1. Disagregation Coefficients

The spatial distribution of disaggregation coefficients derived from ANA’s sub-daily gauge
network for durations ranging from 15 minutes to 24 hours, expressed as ratios relative to the daily
maximum, is presented in Figure 2. The network spans all major regions of Brazil, with higher
station density in the South, Southeast, and Northeast, and sparser coverage in the Amazon and
interior North. Results indicate that short durations already account for a representative fraction of
daily extremes: for example, the 1-hour duration captures on average 56% of the daily maximum,
underscoring the dominance of intense convective bursts in shaping daily totals. The 15- and 30-
minute durations also contribute significantly, with mean ratios of 0.30 and 0.41, respectively,
while longer durations progressively approach unity, with 0.87 at 6 hours, 0.98 at 12 hours, and
1.14 at 24 hours. This pattern highlights that sub-hourly to hourly extremes are not negligible,
but instead represent a substantial share of daily rainfall, particularly in regions affected by short-
lived convective storms. The variability observed at intermediate durations reflects the influence of
contrasting storm regimes across Brazil, while the number of extracted maxima per station reveals
heterogeneous data availability, with some gauges contributing over 200 events and others far fewer.

Figure 3 illustrate the spatial distribution of sub-daily rainfall ratios across Brazil, obtained by
interpolating at-station coefficients from the ANA telemetric network to a 0.1◦ grid using inverse-
distance weighting. The maps show how rainfall accumulated over short reference durations (from
5 minutes up to 12 hours) compares with longer benchmarks, highlighting the temporal scaling of
extremes across diverse climatic regions. For the shortest intervals (5–15 minutes relative to 30
minutes), higher ratios are evident in the North and Northeast, reflecting the dominance of intense
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Figure 2: At-station disaggregation coefficients for Brazil using ANA stations.

convective bursts that contribute disproportionately to short-duration rainfall. Conversely, lower
values are found in the South, where frontal systems and stratiform precipitation spread totals more
evenly over time. The transition from 30 minutes to 1 hour, and from 1 hour to 24 hours, shows that
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Time Relation 5min/
30min

10min/
30min

15min/
30min

20min/
30min

25min/
30min

30min/
1h

1h/
24h

6h/
24h

8h/
24h

10h/
24h

12h/
24h

24h/
1dia

CETESB 0.34 0.54 0.70 0.81 0.91 0.74 0.42 0.72 0.78 0.82 0.85 1.14
GRIDF 0.28 0.49 0.73 0.86 0.93 0.73 0.50 0.79 0.82 0.86 0.88 1.14
Bias -21% -10% 4% 6% 2% -1% 16% 9% 5% 5% 3% 0%

Table 1
Comparison of ratios between CETESB and GRIDF datasets. Values of GRIDF in this table represent
country averages. Bias was computed as (GRIDF − CETESB)∕CETESB.

hourly extremes typically account for a large fraction of daily maxima, particularly in convective
regions, while more gradual accumulation dominates in subtropical zones.

Longer duration ratios (6–12 hours relative to 24 hours) display more spatial uniformity, with
values clustering near unity across most of the country. This indicates that half-day accumulations
are generally representative of daily totals, regardless of climate regime. However, localized
differences persist, especially along the coastal mountains of the Southeast and in parts of the
Amazon, where orographic enhancement and mesoscale convective systems can extend rainfall
durations and lower sub-daily ratios.

Table 1 compares the nationally averaged disaggregation coefficients derived in this study
(GRIDF) with the fixed values traditionally recommended by CETESB. The results highlight
systematic differences across durations, with GRIDF ratios generally lower at very short intervals
(5–15 minutes) but higher for hourly to multi-hour scales. For example, at 5 and 10 minutes the
GRIDF coefficients are 0.28 and 0.49, respectively, compared to 0.34 and 0.54 from CETESB,
corresponding to underestimations of 21% and 10%. In contrast, the 1-hour to daily ratio is
0.50 in GRIDF versus 0.42 in CETESB, a substantial 16% increase that underscores the greater
contribution of hourly extremes to daily totals in the observed records. It is important to note
that durations of 5 and 10 minutes are primarily made from the fittings to the data and spatial
interpolation results.

At intermediate durations such as 6–12 hours, GRIDF coefficients remain consistently higher
than CETESB by 3–9%, reflecting the role of prolonged convective or mesoscale events that
CETESB’s constants fail to capture. By construction, both approaches converge at the daily scale
(1.14), but the progression across shorter durations reveals the limitations of assuming uniform
ratios nationwide. The GRIDF-derived coefficients suggest that short bursts are somewhat less
dominant than implied by CETESB, whereas longer accumulations contribute more strongly,
especially at the 1-hour and 6-hour scales. These differences are hydrologically significant, as they
directly affect design storm estimates for urban drainage and flood modeling, potentially leading
to overdesign at sub-hourly durations and underdesign at hourly scales if CETESB constants are
applied indiscriminately.
3.2. Bias Correction

As shown in Figure 4, all four products reproduce the large-scale rainfall gradients across
Brazil, with higher annual totals along the northern and northwestern Amazon Basin and lower
values in the semi-arid Northeast and southern interior. Relative to the BR-DWGD benchmark,
IMERG slightly overestimates rainfall in the southern Amazon and central Brazil, while CHIRPS
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Figure 3: Spatial distribution of sub-daily rainfall ratios over Brazil. Panels (left→right, top→bottom)
show: 𝑃 (5min)∕𝑃 (30min), 𝑃 (10min)∕𝑃 (30min), 𝑃 (15min)∕𝑃 (30min), 𝑃 (20min)∕𝑃 (30min),
𝑃 (25min)∕𝑃 (30min), 𝑃 (30min)∕𝑃 (1 h), 𝑃 (1 h)∕𝑃 (24 h), 𝑃 (6 h)∕𝑃 (24 h), 𝑃 (8 h)∕𝑃 (24 h),
𝑃 (10 h)∕𝑃 (24 h), 𝑃 (12 h)∕𝑃 (24 h), and 𝑃 (24 h)∕𝑃day. Gray dots indicate the gauges used in each
panel (after resolution/quality screening); for the 5- and 10-min panels the short-duration values come
from a polynomial model and are not constrained by native gauge resolution. Values are interpolated
to a 0.1◦ grid using inverse-distance weighting (𝑝 = 2, 𝑘 = 10 neighbors) and masked to Brazil; state
boundaries are overlaid. The shared vertical color bar (right, 20 discrete bins, range 0.30–1.20) shows
the dimensionless ratio 𝑃 (𝑑1)∕𝑃 (𝑑2), where larger values indicate a greater fraction of the reference
duration in the numerator relative to the denominator.

and PERSIANN-CDR display totals closer to the reference in these regions. In contrast, the semi-
arid Northeast and the coastal zones of the Southeast reveal stronger divergence: IMERG tends
to produce wetter estimates, whereas PERSIANN-CDR shows drier conditions compared to BR-
DWGD. Despite these regional differences, all datasets converge in capturing the spatial structure of
rainfall maxima over the Amazon and the overall gradient toward drier conditions in the Northeast,
with mean national averages differing by less than 5% relative to BR-DWGD.

Figure 5 illustrates the impact of multiplicative bias correction on the agreement between
gridded rainfall products and station observations at the 98th percentile threshold, which targets the
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Figure 4: Annual average rainfall from 2000 to 2023 for different products.

upper tail of the rainfall distribution. The scatterplots in the left column show that all raw products
systematically underestimate extremes, with regression slopes well below unity and substantial
spread around the 1:1 line. For example, BR-DWGD raw values yielded a slope of 0.61 (𝑅2 = 0.89),
which improved to 1.07 (𝑅2 = 0.90) after correction, while PERSIANN improved from a slope
of 0.38 (𝑅2 = 0.68) to 0.94 (𝑅2 = 0.72). IMERG, although improved from 0.55 (𝑅2 = 0.63)
to 1.13 (𝑅2 = 0.64), still exhibits larger scatter, and CHIRPS shows a similar trend, with slope
increasing from 0.44 (𝑅2 = 0.68) to 1.02 (𝑅2 = 0.72). These results indicate that the bias correction
effectively rescales magnitudes and reduces systematic underestimation, while also improving
variance explained in most cases.

The maps of bias factors reveal coherent spatial patterns in the required corrections. BR-
DWGD shows relatively minor adjustments, consistent with its dense gauge foundation, while
IMERG and CHIRPS require stronger upscaling in northern Brazil and the semi-arid Northeast,
where convective systems dominate. PERSIANN exhibits the largest corrections, with bias factors
exceeding 2.5 in central and southern Brazil.
3.3. Comparison with existing IDFs

Figure 6 compares the bias between observed station-fitted and raster-derived IDF curves for
selected durations (15, 60, 1440, and 7200 minutes) and return periods (10 and 25 years). The
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Figure 5: Bias correction for 98th percentile above rainfall using daily-resolution ANA rainfall stations.
Rows correspond to BR-DWGD, IMERG, CHIRPS, and PERSIANN. Left column: raw product values
(y) plotted against rain-gauge values (x). Middle column: bias-corrected values (𝜁𝑃 ). All scatter panels
share the same axis limits (0–200 mm). The red line is the 1:1 reference; the colored line is an origin-
forced fit with slope 𝑎 and 𝑅2. Point colors indicate sample density. Right column: spatial field of the
multiplicative bias factor 𝜁 over Brazil with state boundaries and contours at 0.5 resolution. A single
vertical colorbar shows 𝜁 (range 1–3.5). Values 𝜁 < 1 indicate product overestimation; values 𝜁 > 1
indicate underestimation requiring upscaling.

largest biases are observed at shorter durations (15 and 60 minutes), where IDFs estimated in
this paper tend to overestimate rainfall intensities by more than 50% at several stations, for both
disaggregation methods. For daily and multi-day durations (1440 and 7200 minutes), biases are
generally lower in magnitude. Because positive but relatively lower biases are observed in the
1440 min duration (24h), and sub-daily rainfall is estimated with disaggregation coefficients,
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Figure 6: Boxplots of bias (%) between observed IDFs from daily rainfall (disaggregation) and with
sub-daily rainfall (standard) from (Torres et al., 2025) to locally-derived IDF curves using BR-DWGD for
selected durations (15, 60, 1440, and 7200 minutes) and return periods (10 and 25 years). The shaded
zero line highlights unbiased agreement, while positive values indicate overestimation of intensities by
the raster product relative to stations.

the differences in the median biases for sub-daily durations might be highly influenced by the
disaggregation coefficients used. These results highlight the importance of incorporating locally
derived disaggregation when estimating short-duration extremes, as it leads to more reliable and
spatially consistent IDF curves across Brazil (Figure 6).
3.4. GRIDF - BR Toolbox

The GRIDF-BR Google Earth Engine interface was developed to provide an interactive
platform for visualizing and comparing rainfall Intensity–Duration–Frequency (IDF) curves across
Brazil. The tool allows users to select among multiple rainfall products (BR-DWGD, IMERG,
CHIRPS, and PERSIANN), apply either raw or bias-corrected data, and choose the disaggregation
method (locally derived, CETESB, or station-based). Users can then display spatial maps of IDF
parameters or performance metrics (e.g., 𝐾 , 𝑎, 𝑏, 𝑐, MSE, RMSE, 𝑅2) and query individual grid
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Figure 7: Overview of the GRIDF-BR Google Earth Engine interface. Panel (1) selects the rainfall
product (BR-DWGD, IMERG, CHIRPS, or PERSIANN), followed by panel (2) for bias option (RAW or
BC), and panel (3) for the disaggregation method (Locally-Disaggregated, CETESB, or Station-derived).
Panel (4) chooses the IDF parameter or metric to visualize (𝐾, 𝑎, 𝑏, 𝑐, MSE, RMSE, or 𝑅2), while panel
(5) reports sampled values at the clicked location, including coordinates, elevation, parameters, and
model diagnostics. On the right side, panel (6) shows the IDF curve for the selected point, and panels
(7)–(8) present grouped bar plots where each group corresponds to a bias–disaggregation combination
and colors indicate datasets (blue: BR-DWGD, green: IMERG, orange: CHIRPS, purple: PERSIANN). All
charts can be downloaded in SVG or PNG formats, or exported as CSV tables. The tool can be accessed
in https://gridf-470516.projects.earthengine.app/view/gridf-br.

cells to obtain detailed diagnostics including coordinates, elevation through MERIT DEM (Ya-
mazaki et al., 2019), fitted parameters, and quality statistics. The interface also generates IDF curves
for user-defined points and grouped bar plots to compare products across bias–disaggregation
combinations. All outputs can be exported in graphical (SVG or PNG) or tabular (CSV) formats,
enabling flexible integration with external analyses (Figure 7).

4. Discussion
Reliable Intensity–Duration–Frequency (IDF) curves are essential for urban planning, stormwa-

ter design, and flood risk management, yet the absence of updated, nationally consistent tools
in Brazil has left many designs vulnerable to underestimation or overestimation of extremes.
Recent unprecedented catastrophic floods in Rio Grande do Sul highlight how inadequate design
standards can amplify human and economic losses (Marengo et al., 2024; Collischonn et al.,
2025). Unlike countries such as the United States, which benefits from NOAA’s Atlas 14 and long-
term sub-daily networks (Atlas, 14), Brazil lacks a unified national framework and high-resolution
datasets to fully characterize and spatially resolve the role of short-duration rainfall. Despite these
constraints, advances in rain gauge networks and satellite-based products now allow us to construct
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these limitations. While certainly not free of uncertainties, these datasets provide an operational
platform for evaluating storm intensity, comparing methods, and quantifying uncertainty. This step
forward can improve the reliability of design decisions and enhance resilience in Brazilian cities
increasingly exposed to short, intense convective storms.

The results of our analysis show that short-duration rainfall events contribute a large part of the
daily maximum. On average, 1-hour accumulations represent about 56% of the daily total, while
sub-hourly bursts contribute 30–40%. This confirms the importance of convective storms in shaping
extremes and indicates that using constant national disaggregation coefficients, such as those from
CETESB, can lead to systematic underestimation for several sub-daily durations. Locally derived
values are therefore needed to represent the contribution of short durations and to produce more
reliable IDF curves for design.

The spatial analysis of disaggregation ratios indicates variability across regions, but clear
climatic patterns are difficult to isolate with the current quality controlled gauge network. The
uneven distribution of stations, combined with differences in record quality and length, limits the
ability to fully characterize regional controls on short-duration rainfall or to define smooth regions
to apply regionalized disaggregation coefficients. For this reason, we present not only results using
rasterized disaggregation coefficients, but also constraining the grid cells to use the coefficients
of the closest quality-controlled station. It is likely that with a denser and more quality-controlled
rain gauge network, more consistent spatial patterns would emerge without the influence of spatial
interpolation artifacts. Despite these limitations, the results confirm that disaggregation is not
uniform nationwide, and that applying fixed coefficients introduces bias. Nonetheless, even with
the interpolated fields of disaggregation coefficients developed in this paper, national averages of
these coefficients remained virtually larger than CETESB for all durations larger than 15-min - the
higher rain gauge resolution used in this analysis. This clearly suggests evidence that short extreme
rainfall extremes might be higher than those proposed by CETESB in 1986 for the recent climate.

Satellite products show good convergence when estimating annual mean rainfall, with averages
generally consistent across datasets and with BR-DWGD. However, agreement at the long-term
annual mean does not extend to the tails of the distribution. The analysis of extremes reveals
substantial differences between products, particularly for short durations and high return periods.
This highlights that while satellite data are useful for capturing broad spatial and temporal patterns
of precipitation, careful bias correction and validation against gauges are required before they can
be reliably used for IDF estimation.

The comparison between stations and gridded products shows that raw datasets, including
BR-DWGD, IMERG, CHIRPS, and PERSIANN, consistently underestimate rainfall extremes.
Applying multiplicative bias correction improves the agreement with observations, reducing
systematic errors and narrowing the spread between products. These results confirm that bias
correction is necessary for both satellite-based and gauge-interpolated datasets before they are used
in IDF estimation.

Most of the IDF equations historically available for Brazil were developed using past climate
records, with only a limited number extending beyond the year 2000. The compilation by Torres
et al. (2025) shows that more than 6500 IDF equations exist nationwide, but the majority were
derived either from short pluviographic series or through the disaggregation of daily rainfall
using diverse empirical methods for disaggregation from national, regional, to local disaggregation
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inconsistencies and data limitations as much as real hydroclimatic variability. This limitation under-
scores the need for updated IDFs based on quality-controlled, long-term records and standardized
methods, ensuring comparability and reliability across regions.

The GRIDF-BR toolbox developed in Google Earth Engine provides a practical means of
applying the methods presented in this study. Through an interactive interface (Figure 7), users can
explore IDF parameters across multiple rainfall products, compare raw and bias-corrected datasets,
and select different disaggregation approaches. The tool generates maps, station-level diagnostics,
and IDF curves that can be exported for further analysis, making the results directly accessible to
practitioners. The toolbox has several practical applications beyond IDF curve generation. At the
engineering level, it can be used to design and test urban drainage systems by providing updated
rainfall intensities for multiple durations and return periods. Because the spatial resolution of the
datasets allows for several grid cells to cover a single metropolitan area, the tool also enables
the assessment of subgrid climate variability within cities, an important factor in local-scale
planning. By allowing users to compare different rainfall products, bias-correction options, and
disaggregation methods, the toolbox supports a more explicit evaluation of uncertainty in rainfall
extremes, which is critical for risk-informed design. In addition, its accessible interface and direct
visualization capabilities make it a valuable educational platform for teaching hydrology, climate
adaptation, and water resources planning.

5. Conclusions
This study addressed the urgent need for updated and spatially consistent IDF curves in

Brazil, where most existing equations are based on outdated climate records and heterogeneous
disaggregation methods. We combined BR-DWGD daily maxima (1994–2024) with locally derived
disaggregation coefficients and applied multiplicative bias correction to satellite products (IMERG,
CHIRPS, and PERSIANN) in order to produce a consistent framework for IDF estimation. The
approach was implemented in the GRIDF-BR toolbox, an open platform developed in Google Earth
Engine to support practitioners and researchers.

The results demonstrate that short-duration rainfall contributes substantially to daily totals,
with 1-hour extremes accounting on average for 56% of the daily maximum (16% larger than the
national standard) and sub-hourly bursts contributing 30–40%. Uniform coefficients, such as those
from CETESB, fail to capture this contribution and systematically underestimate or overestimate
intensities. Bias correction using the 98th percentile as a threshold to define extreme events
improved agreement between gridded products and rain gauges. All uncorrected gridded products
systematically underestimated daily extremes. Applying a multiplicative bias adjustment improved
agreement with gauges, yielding parity slopes close to unity: BR-DWGD improved from 0.61 to
1.07, IMERG from 0.55 to 1.13, CHIRPS from 0.44 to 1.02, and PERSIANN from 0.38 to 0.94.

The findings of this study have relevant implications for hydraulic design and urban planning.
The proposed framework provides a consistent basis for estimating IDF relationships at the
national scale, which may help reduce the risk of underestimating design storms and improve
infrastructure planning in flood-prone areas. The GRIDF-BR toolbox operationalizes these results
by enabling IDF extraction, product inter-comparison, and visualization at municipal and basin
scales. Nevertheless, some limitations should be noted: the availability and quality of sub-daily
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data are still lacking to fully characterize storm dynamics. Future research could focus on testing
more advanced bias-correction approaches and incorporating climate change scenarios so that IDF
curves reflect both present and projected conditions. Expanding and improving the network of
high-quality sub-daily rainfall measurements will also be essential for better representing the short,
intense events that drive urban flood risk and constitute critical inputs for design and adaptation.

Data and Tool Availability
All datasets and tools used in this study are openly accessible and can be found in an open repos-

itory https://github.com/marcusnobrega-eng/GRIDF. Daily rainfall fields were obtained
from BR-DWGD (Xavier et al., 2022), CHIRPS (https://www.chc.ucsb.edu/data/chirps ,
GEE: UCSB-CHG/CHIRPS/DAILY), IMERG V07 (NASA GES DISC/PPS, GEE: NASA/GPM_L3/IMERG_V07),
and PERSIANN-CDR (NOAA NCEI, CHRS: https://chrsdata.eng.uci.edu ). Sub-daily
records for disaggregation were retrieved from the ANA telemetric network (Hidroweb/Telemetria).
The GRIDF-BR toolbox for interactive IDF retrieval is available on Google Earth Engine at
https://gridf-470516.projects.earthengine.app/view/gridf-br . Processing scripts
for data handling, bias correction, and IDF fitting will be released on GitHub under an MIT license.
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